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We—givesfufficient conditions for local continuity of the isonormal process

L at some point of its parameter set. Since a Gaussian process, defined on a
compact parameter space, that is a.s. continuous at each point is sample continu-
ous, our result can be applied to the problem of general sample continuity of
Gaussian processes. It is shown that.ou!’;ufficient conditions are strictly weak-

er than the classical sufficient conditions for sample continuity.
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1. Introduction

Let {X(t), teC} be a Gaussian process with a continuous covariance function
over a compact subset C of a metric space (S,d). Such a process is called sample-
continuous if there is a version of the process with continuéus sample func-~
tions. Equivalently, {X(t), t ¢ C} is sample-continuous if it is uniformly con-
tinuous for t restricted to a countable dense subset of (. The process is said
to be sample-bounded if it has a version with bounded sample functioms.

Let to be a point of C. The process is said to be continuous at t, if there

0

is a version of the wocess with sample functions that are continuous at t

0
Equivalently, the process is continuous at to if P(lim Xt==xt )=1, C* being a
t>t 0
0
teCx

countable dense subset of C.

Let H be a real, infinite-dimensional Hilbert space. A linear map L from
H into real Gaussian variables with ELx = 0, ELxLy = (x,y) for all x,ye¢H is
called the isonormal Gaussian process on H. (As usual, (*,*) denotes the inner
product in H).

A modern approach to the study of sample function continuity and boundedness
of Gaussian processes reduces this problem to the study of those sets CcH on
which the isonormal L has continuous or bounded sample functions, called GC-sets
and GB-sets respectively (Dudley (1967, 1973), Feldman (1971), Sudakov (1969,
1971)). This approach relates GC and GB properties to a certain measure of the
size of a set C in H, called metric entropy.

Let C be a subset of a metric space (S,d). Given £€>0, let N(C,S)EENC(E)

be the minimal number of points x .+» X from C such that for any ye C

1°%2
there is an X, such that d(xi,y) <e. Then Hc(e)==£nNc(€) is called the metric

entropy of C, and the exponent of entropy r(C) is defined by
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2
s Znﬂc(e)
N r(C) = lim -]-Z—]—.
>0 ne
. Dudley (1973) proved that CcH is always a GC-set if
1 y ,
. (1.1) [Ho(x) Zdx < . ;
0

This is an extremely sharp result, for it implies that C is a GC-set if r(C) <2, !
and it is known that C cannot be a GB-set (and so not a GC-set) if r(C) > 2
(Sudakov (1969)). The case r(C) =2 includes an ambiguous range, however, where
HC(E) cannot determine whether C is GB or GC (Dudley (1973)). 1In particular,
there are GC-sets for which the integral (l.1) diverges.

In this paper we find conditions under which the isonormal process L on

a set CcH is a.s. continuous at some point Xg € C. This is closely related to K
the question of whether or not C is GC. Clearly, if C is GC, then the isonormal f

process is a.s. continuous at each point of C. Less evident is the converse

statement: if the isonormal process is a.s. continuous at every point of C, .
then C is a GC-set. This important property of Gaussian processes was noted
for Gaussian processes on [0,1] by Marcus and Shepp (1971), page 436, who give
credit for the idea to R. Dudley, and can be extended as follows.

THEOREM 1.1, {
Let C be a compact subset of a metric gpace (S,d), and X(t) a Gaussian pro-

cegs on C. If X(t) i8 a.s. continuous at each point of C them it is sample con-

tinuous.

The proof of Theorem 1.1 will be given in the Appendix at the end of the

paper.

. % Ay X

In the following section we give sufficient conditions for local continuity

of the isonormal process. These conditions turn out to be strictly weaker than
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: those obtainable from (1.1). Consequently, our result (Theorem 2.l1) can be
used to establish the GC property in situations in which the integral (1.1) di-
verges.

I am deeply indebted to Robert Adler and Stamatis Cambanis for their

valuable remarks during the preparation of this paper. {
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Sufficient conditions for local continuity

We start with some additional definitions and preliminary results.

For a given set C in a Hilbert space H and a given point xoe C, set
(2.1) C (8):={xeC: ||x-x_|| <8}, §>0.
X, 0
(2.2) N (S8,e) := N(C_ (8),e), 6>0, €>0.
X X
0 0
(2.3) Nxo(dl,dz,e) 1= N(Cxo(éz) n Cxo(Gl) »E), 62 > 61 20, £>0.

A set C is said to satisfy condition A if

NENENENY
(2.4) sup 1 2 7 = M <
xl,xzeC “xl -x, i

xl#x2
The isonormal process L restricted to such set C, satisfies the following

bound, which is derived in Samorodnitsky (1986).

"’onm

o -
1 -1
(2.5) P{supLx >X 0+ ) €, A.} < N (E,)e — A . e
xec 0 jzl j j C l ‘/2-" 0
2
_do,
1 -1 2 1 2
+ — . - -
o Ao e kZZNC(ek)exp{ 71 P8 }

oo

for any positive sequences {Ej}j=l’ {)‘j};:O’ €j+0 as j+, satisfying the

following conditions for all k= 2.

(2.6) Ak_lzl, .
A
k-1 1
(2.7) pk < < =
k )‘0 ol’:
Here
2Mo+ 1
R ox -
(2.8) pk : 25 €l

and
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The proof of Theorem 2.1 is based on the bound (2.5). b3
) Remark 2.1. The following property of metric entropy is used in the sequel. )
[} N
X For any (., c(C_, any €>0 ~
. 1 2 J
€
(2.9) No (e) < Ne (2). ’
1 2 -
y e
g o
: This relation is semi-evident; details can be found in Samorodnitsky (1986). -;
L)
s
) THEOREM 2.1. ;
; Suppose there exists a function H(s,t) such that the following two condi- ¢
: tions hold -
(2.10) £aN_ (8,,8,,€) <H(S,,€) a
0 b3
g
for any €>0, any 0< 6l< 62 <0, 8 t8 a fixed constant.
s l/ :':
(2.11) lim [H(s,t) ‘2dt = 0. -
s>0 0 Py
r - -
h Then the igsonormal process L restricted to C is conmtinuous at Xy )
>
Remark 2.2. An alternative sufficient condition for continuity of the isonormal ;
! process at X that follows directly from (1.1) is ::
f 1 y, -
(2.12) [Ho 5 () 249t < » for all §>0 small enough. )
X )
0 N\
: It is easily seen that the condition given by Theorem 2.1 is strictly weaker 'f-
: than (2.12). (Suppose that (2.12) holds for all § <8. Then take >
H(s,t) := Kan (s,e,%). Then (2.10) holds via (2.9), while (2.12) and (2.9) .
] 0 =~
' together imply (2.11). The examples given in the end of this section represent :Zj
) situations in which Theorem 2.1 works while (2.12) fails.) T
}t
A “W T JAb '_- ._--.__'. }:__:: _:‘.'_.‘_:..,: }: - __- -

'. \‘- . - .-_u o 30wy _..l’-‘_
"5 fi‘fﬂ' ’_ﬂ'- quq S
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Proof of the theorem.

Note that H(s,t) := Kan (s,e,g) also possesses properties (2.10) and (2.11).
0
Consequently we may and will assume that H(s,t) is nonincreasing in t for each

s. Fix 0<u<1 and define

(2.13) Hu(s,t) 1= H(s,%t)

Y Y.
(2.14) Hl(s,t) 2.2 Hu(s,t) 2 4 |£ns| + lnllntl

1 1 S 1 1
(2.15) Hy(s,t) Lo, H (s, ¢) ko -i-[gﬂl(s,u) 2gu1 2,

These functions still possess properties (2.11) and (at least for small t)

(2.10). Set

S 1/
(2.16) I(s) := J’H (s,t) 2at
0
and
Yo Y
(2.17) g(s) := [sup{I(u) +I(u) 2}] ‘2.
u<s )

Then g(s) +0 as s> 0. We are going to show that for an appropriate version
of the process
|Lx - Lx,
(2.18) limsup{——TT—————Tr-. Xe C (6)} 1 a.s.
§+0 Cix-x
This implies, of course, that the isonormal process L restricted to C is con-
tinuous at x.,. As the supremum in (2.18) is taken over a decreasing family

0

of sets, it is enough to prove that for any a>0

|Lx - Lx |
(2.19) limP[sup{—(—]'m—'xeC ($)r>1+a] =
§+0
Set 61 1= Gui, i=0,1,2,... . Then 61+0 as 1+>, Consequently the mono-

tonicity of g(s) implies that




N |Lx - 1x )

A
A (2.20) P[sup{—("x—x—n— xeC (G)}>1+a] ‘

|Lx - Lx |

]

< ZP[sup{—(Wm— xeC ((S )nC i+l Y}>1+a]

) ;
. < ¥ P[sup{|Lx-—Lx0| :xer (8, n Cx (5i+l)}>(l+0l)g(5i+l)]- ;
X i=0 0 0 j
~ L
N We are going to estimate the probabilities in the last sum in (2.20). Denote '

. Ci = {x—xo, X € Cx (61) an (Gi+l)}.

0 0
v
“u
l.; We obtain by the linearity of the isonormal process that :
~ .
~° ——— D
- (2.21) P[sup{ILx-Lx0| 1xe cxo(ai) n Cxo(‘51+1)} > (L+a)g(8,, )]

v

J..’ -

7 = P{sup |Lx|> (l+a)g(6i+l)}. :
-, XECi )
<.
g We would like to apply the bound (2.5) to the last probability on (2.21).

U
:’,: However , Ci may not satisfy condition A, thus we first define
o,

*,

:. A 61

Ci = {x°m, xeci}.

"_: Clearly,

o S,

o sup |Lx| = sup {]Lxl'-n—n—l } 2 sup |Lx]|. )
. xeg xeC X xeC :
- i i i
b Thus f
. (2.22) P{sug lel > (l+a)g(61+l)} < P{sup |Lxl > (l+a)g(51+l)} :
- xeC )
.~ i
,i Moreover, the points in éi have equal norms (51), and so Ei satisfies condition
P_' ~ t
;: A with M=0. We apply the bound (2.5) to Ci’ taking 0=g=61, M=0. For any i
4 3
4 two sequences {e( )}j -1’ {Afi)}"f’:O satisfying (2.6) and (2.7) we thus obtain '
#

oo
Cal
.d'

'I

'I
L
L
”,




(2.23) P{sug x| > 2P +.2 ey < /2089y Texp (- L0y 2y )

=1 3 0 ¢,

2, (i)y-1 1,.(1),2, % (1) L, (1) (1),2
+'/;()\0 ) “Texp{~ 20‘0 ) }.z N_ (E:j )exp --Z-(Xj_l-og)\o )Y

=2 Ci

Note that for any X)sX, € Ci

. §. ] 61 ) X X, x, x,
ey el =2 Ty T = Sl = T, * T - T

28
T e -xpll < 5= lx -
1 i+l
= 2||x. -
= gllx - x, .

Consequently for any € >0

), €°5)

(2.24) Nas (€) < N, (E*3) = N(C_ (6.)n C_ (3
Ci Ci 2 Xq i X, i+1 2

Thus, (2.23) can be rewritten as

(2.25) Plsup |ux| >a(n)s, + ] (D)

xeCi j=11 3

/By Lexn (e Lacay?
/B Lexpl- Baca) h, @

i+l’61'

(1)

€

+ /_l(i) exp{- —>\(i) 2y Z N (6
j=2

i ° L,
o8l enl- 001 - oy,

. ,s:,‘. IR .

e T T

Jal el O
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": where A(i) denotes >\0 . Now we specify the €. and }\j sequences. Set
i ‘
4 . g(s,, )
" .
N (2.26) A) = A o AL
~ 0 §
Y i
N (1) _ B
. (2.27) ej : Bléiz , J=1,2,...,
- -] A
- H (5, .,2 -8 )
: (2.28) Aj(i) R R e Teav Rl T
- By(8i4102 044
for some positive constants Bl’ ) to be specified later in order to meet
. 1 1
> certain conditions. Note that g(s) =s /zllnsl /2, consequently, at least for
*: small values of §, A§i) 2] for all 1 and j. Furthermore, the condition
A(l)
p* <TJ(1_) holds for all {20, j=22 if and only if
: 1
~ ——
(2.29) 82 7
, (D)
. j-1 1l , becomes, after a sub-
The second part of condition (2.7), namely 1) < B;
stitution,
. -1 2
~ H2(6i+1’2 8i41) -
- (2.30) - 7 > B2 °.
" 1+41°2 i+1
‘::
e Note that for any 0<d <1 we have
3 1 t 1 1
.:' 1 /2 _l_ /z /2
N H_(t,dt) ko H (t,dt)? + t[fﬂl(t,u) du]
. 2 _ 0
N (2.31) 7 X .
" 2 1 1
- HZ(t’t) H, (t,t) f + l[f}-l (t,u) /zdu] /2
1 t'1
-h- 0
dt 1 t 1 1
2 = [H (t,u) Pau + L fu. (¢,0) 2du] 2
. t. 1 t a1
- 0 0
2 < £
’. 1 1
2 iU'H (t,u) /Zdu] /2
- t 1
. 0
.~
-~
Y
3
h> 2
4
‘-)' u‘_.( \'- '-'.f -
e L
N S SO




where K<« jis a constant that does not depend on t and d. Thus, the following

condition

which is equivalent to

4
(2.32) Ble < X’

implies (2.30) for all 120, j=22. Consequently, if we choose Bl and B2 to
satisfy the restrictions (2.29) and (2.32), the condition (2.7) will be satis-

fied. Furthermore,

® 1
(DS, + z e L aws, 1+ I 279my6,, .27, 0"
j=1

l J 1/2

1
l
! H2(51+l,u) du

)\(1)61[1 + 2B.B 7 ].

12 5 u. (s -1

2
41820054102 8 4p)

Here the monotonicity of Hz(s,t) in t has been used. An argument similar to

that in (2.31) yields that for 0<d<1

t 1/
fHZ(t,u) 2du

0
dtHZ(t,dt)

(2.33)

<

1
where K is the same constant as in (2.31), independent of t and d. Consequently

(D)6, + Z e§i) §1) A(1)8, (1 + 2B BK).

If we also choose B1 and B2 in such a way that

(2.34) ZBleK < a

L. (SN
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Lo

Ty AR
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then we get

(1), (1)
()8 +j£leJ p (1+a))\(1)6 (1+a)g(61+1).

Consequently, (2.25) implies that

1)
o € u
(2.35) P{}s{:g ™ >(l+a)g(61+l)}sv/%>\(i) L expi- %A(i)z}uxo(aiﬂ,ai,—lz——)
i
efi)u
+'/—)\(i) exp{- —A(i) }jZZN 0(6”1’ ) ——)exp{- —(Aj(ii—o*k(i)) }.

For every fixed i=0,1,2,... let a, and bi be the first and the second terms,
respectively, in the right hand side of (2.35). Then (2.20), (2.21), (2.22) and

(2.35) imply that

le Lx ‘ v v
(2.36) P[sup{—ﬂ-—n-( =0 xeC (6)}>1+0L] < Zoai+ izobi.

We are going to estimate each of these sums separately. Letting c be a finite

positive constant that may vary from line to line we obtain

2 (1)
) -] g((s ) € u
i+1 1
1);031 = '”izoe"p{' 552 + anxo((Sii-l’(Si’—-Z——)}
i
88, )° ey
< cizoexp - 2—62— + H(S§ +1,—2'—) }
i
2
© 8(8,,,)
. RS 2 S (1)
< LizoexP{ 262 + H2(61+l’ 81 ) }
i
™ I(s8,,,)
. - i i+l -1
. "120""“’{ 27 2 +H (6,812 78}

i
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12
z u H2(61+l’61+l)1/2 -1
e ] exp{-3 5 *H) (8,082 T8y}
i=0 i
o 6.8, )" 25, H,(5,. .28, ) 3
- ¢ 7 exp{- 3 By Osa1°°141 (] -« 1.2 d+1° 1 1417,y
®iZo P 8 l . W ) 2 )
14178541 N
for § small enough. Note that (2.31) implies that .
Hy(8,,1>8,2 51+1)1/2 2K
< max{1,=} b
H, (8 )2 By
2 i+l’ i+l
while
1 1
2 -1 2K /2
8,8,(8,4198,2 '8y S max (1, 1)61+132(61+1’51+1)
and the last expression converges uniformly in i to zero as §+0. Consequently, .
-
for 8§ small R
S
oo o / © oo .
Ya, <c ] exp{- —+H (6,,.,6,, )2 <c ) exp{-|€nS__ |} =c] 3§
2o 1 io 48,72 AL i i%0 i+1 Lo 1+l |
) cdu .
R :
as §+0. Next we consider the sum Z;Obi' Note that for all j 22 -:
:
,~(3-1) Y i’
H (8,,,,2 §..)" _ 7
2.36) A _om(y) = a1 (B, 21 g 27d
-1 By(8,,,,2706,, )" ! '
i+l’ i+l rd
’
De % ;
(8,2 Vs 2 ’
2
Hy(6,,,52 s 141 2 I
-1 o :
1 Hy(Gyqy22 e ” B
2 =B A (i) 1 ] s
272 H, (s 2=1s )/2
i+l’ i+l
i
S
N
u
o
) \-‘\
%.:ia‘wzir :‘_ﬁ'-"i‘_f;f:f: .s . .‘:\.-,'.r:..-'.:v:..,--::f._-.:.,:-,.\::.j': ::-"..-;.,'-.::.,:'-:.':s.'ex"’: ..'_‘.\";."-.::' .":;:':.'.::'_:.:::-.::."':::':::. ;:...*._ .':\.:-."::'..:_.' A




whenever Bl and B2 are chosen to satisfy

o1
(2.38) E

J‘IN

Note that (2.38) implies (2.29). Using (2.37) we get that for small §

e(i)u
6 ———)exp{- (

® (1)
Y N (8 5-1

2
-p*A(1))7}
i=2 %o ]

i+1’

32 2 -(j-1)
pot g(s,..)" H.(S,, ,,2 §...)
< ] explhy(s,, ,B,8,27Y) - % 1417 2 il 141
i=2 2 i+l 8 62 H T 16 )
; i 1+1’ i+l

[+ 2 '(j-l)
< 7 {- B . Hy (84122 8141 . 108,40
R T M8, .27, ) 8

i 1+1’ i+l

8 4x%u2 By (84102 78,8
x [1 - = max (1, ) ]

2 2 I(8 )

B2 l i+l

o 2 -(j-1)

Bzu H ((Si_'_l, 6i+1) 1/2
! exp{- g3 1 RACHRELINY
j=2 i Ho(8,,.,27%6..) o1
J 2%°%4+1° i+l

l
2 2 H (6 ,2 78, )
x [1 - %-max(l,l‘l(zu ) 1+l 1+}/ . 61]}
Bju T ICPRTLIN A

) Z expi- Bzu.H (61+1’ 61+1) CH (6 5 )1/2
=2 88, H, 6 o Lls )!/ ARSI RAs T
i+1’ 1+1

-1 Y.
2.2 H 5,,.,2°6,,.)" 1
1L - - emaxqr ARy B I I gy 6 27, ) B
2 1 i+l’ i+l
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© 2 -(3-1 A
< ) exp{- E.L. Hy @2 8141
j=2 8 2K 61
2 2 .
-8 . 4K u ), 2, /2 .
x [1 2 max(l, -2 )+ (2K)7 - 6. H(8, 56,0 1L
2 1
l L)
But GHZ(G,G) &-+o as §+0. Consequently for small §, uniformly over i
© s(i)u I )
i P YENED B
I N, 6, pSp—lexpl- 307) - o (1))
=2 %o
m 2 -(3-1) ",
< T expl- Bzu.Hz(tS:H_l,Z 6141’ )
=2 32K 61
) exp{—Zanan-(j-l)G |}
. i+l
j=2
o ' -2
s 1 ((3-8n2)"" < w .
j=2

independently of i. Consequently, for small §

[+ o]

7 a..
j=0 1

[o ]
Z b, < ¢
j=0 1

Thus Z:;Obi is finite for small §, and Z:;obi-FO as 6+0. Consequently, (2.19)

is proven and then (2.18) follows. To finish the proof we have to show that it

¢ cmmmmmm w A 4o ~a -

is possible to choose Bl and B2 to satisfy conditions (2.32), (2.34), (2.38).

This is simple. For any Bz>'0 set Bl(BZ)= 232. This satisfies (2.38) independ-
ently of BZ' Then Bz-Bl(BZ)==ZB§. Consequently taking 82 small enough we get

both (2.32) and (2.34) satisfied. This completes the proof.
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. The following two examples are taken from Dudley (1973). .
Example 2.1. Let {ak} be a sequence of positive numbers with a +0. For N
. k=1,2,..., let Ck be a cube of dimension k2 and side Zak/k2 centered at O. .
b Let the cubes C'k lie in orthogonal subspaces. Let C = klek. N
. Consider the origin x0= 0. Letting ak+ 0 slowly, we can make .
> €2Hc (6)(6) +0 as slowly as desired, thus the integral (2.12) can diverge :
\ 0 P
n for all 6>0. Nevertheless, the isonormal process is continuous a.s. at x0=0. :
We show that Theorem 2.] works here. ,
’ For every fixed k and € R
:_ 2ak k2 y
| N(Ck,s) < max{(TE-) ,1}
’ and for fixed 0<61<52, €>0 2
% -
3 n(8.) 4a, . 2 K
J > 1 %kk "
. < =) < —= .
; (2.39) N (8,58,,e) < N(C (8,),3) kgl ) L :
: . where '
. a .
. n(s) := max{k et s} . N
Define also
(] a 1 =
. m(s) := max{k:—lf-zs/"}
‘,: Both n(s) and m(s) increase to infinity as s+ 0. Define :
. n(s) 4a 2 .
. kik .
: (2.40) H(s,t) := &n[ } ) til. ¢
t 3
: k=1 o
“ We have to show that ':
7 <
i s n(s) 4a, .2, »
: (2.41) Lim f{enl § (5% 1}2ae = 0. :
. s*0 0 k=1 R

1 1 1
The obvious relations £n(x+y) < £&n2x+4£n2y, x,y 21 and (x+y) f <x f +y /

yield that

.
"
»,
.
L *
’
f o
L]
-
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5 n(s) 4a 1
(2.42) feal '} H* "1 g
0 k=1
s m(s) 4a Y n(s) 4ak Y Y,
< [{&n[ ) (_kT ]} 23¢ + f{tn[ L (597 11 2de + s(28n2) 2.
0 k=1 0 k=m(s)+1
Denote by Il and I2 the first and second integrals in the right hand side of
(2.42). We are going to show that )
lim I, = 1im I_ = 0.
0 1 &0 2
We have, for small s,
s u(s) Y
< f{) Ik I.n( )+1_n2]} 24t
0 k=1
< s(m(s)€n2) 2 + [ ] k[zn( )] zdt
0 k=1
Y ha) Y
< s(m(s)€n2) 2 + 2 kf[zn(—)] 24t
k=1 0 )
2 , m(s)(m(s) +1) hay
< s(m(s)£n2) + > °2s[£n(—s-)] 2
_1
and this goes to zero as s+ 0 because m(s) Sals /". Further, for every
m(s) <k <n(s)
2
Kkt 4ka, 4ka ba,
ba, |2 ta, 4a, ¢ 1k 1 < 4
(2.83) ) = 1) 5 < (8 t < (D < exp{T‘?g&} :
\
where the first inequality in (2.43) follows from the fact that . 3
1 |
1
[

x
max x = e
x>0

and the second inequality follows from the fact that ak/k23. We conclude

that
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2
8 4a 1

[{2nln(s)exp(—2E82tL) 1} g,
0 t

(2.44) 1 T

IA

A

1 1 1, S 1
slan()] % + 27 /Zam(s)+1's- /z'ft— LT
0

TS e ew

Y A
s[€nn(s)] '* + 4e .am(s)+l'

The first term in (2.44) converges to zero because n(s) < s-lan(s), while
the second term converges to zero because m(s) +« as s+ 0. Therefore, the

conditions of Theorem 2.1 hold.

Remark 2.3. Note that the GC property of C follows. We have just proved

that the isonormal process is continuous at x0= 0. Certainly, for any xoe C

other than the origin, for any sufficiently small § >0 the metric entropy

of Cx (8) is bounded by a logarithmic function of €, and so the integral
0

(2.12) is finite. In this example, consequently, we have proved that C is
a GC class by proving that the isonormal process is continuous at the (only)

"difficult”" point Xy = 0.

Example 2.2. Again, let {ak} be a sequence of positive numbers with ak+ 0.

Let

1/2

C = {¢n-an(£nn)- ,nz2}u{0},

1
q;n orthonormal. Consider x0=0. If ak+0 slowly (ak= (£ndnk) e is slow
enough) then the integral (2.12) diverges for all § >0. Let us show that
Theorem 2.1 can be applied to this example as well. Set

2
a

.= . n 2
) M(s) : min{n.Z—ESS }.
Then, for any 0< 61<52, £>0

(2.45) No(él,éz,e) = [min(M(€), M(Gl)) -M(Gz)]+ + 1.

R g e e e e N N R T e g e
... 'ﬁ‘c"‘-'*r'w-\'\' -\xs 4‘\.-‘ q.--.-\- ‘--‘ oo, -_a'.'A.
fm(z{-\.’}.f'.‘:\ﬁ'csf\'h SRS IO AU SUACIT AU AU O OADIC N



This implies that

(2.46) NO(Gl,Gz,e) < 2M(61).

Set
(2.47) H(s,t) := £€n2 + £oM(s).

Then
1/2

S 1
JH(s,t) hge s[£n2 + £nM(s)]
0

and we have to show that

nmszan(s) = 0.
s*0

But this is clear, since

2
M(s)-1 2
€nM(s)-D > 8

SO

M(s) < 2exp{s—2'aM(s)_l},

and also M(s) +» as s+ 0.

Remark 2.4. Again, we have proved the GC property of C, since at any point

xoe C other than the origin the isonormal process cannot have a discontinuity.

L T A e N e e e T e T T L e e e I T
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o
Y
:;. Theorem 1.1 is proven here. The idea of the proof is the same as that of
":...' Marcus and Shepp (1971) in the case of Gaussian processes on [0,1].
't : .
::: Let C* be a countable dense subset of C. For any I<(, any € >0, define
KX
R there is an r >0 such that for every § >0 there
Al
3 * * <
M Ag(I) = lare t; € C*n I and tzsC such that d(tl,tz) §
i
X _ > .
) . {and |X(tl) X(t2)| E+r
.-': L A.lo
>3
e =
o P(AE(I)) 0or 1.
:l
Y Proof of the lemma.
::'_f
'.;}. Let CIELPTERR be a numeration of the points of C*. Then there exists a
-
';_\ sequence of orthonormal Gaussian variables Yl’YZ"" and real numbers
. {aij}’ i <j, such that for each 1
2
~ i
-~
T (A.1) X(s)) = ¥ ainj.
-e j=l
M Let aij =0 for j>1i, and let for tl,tze C* il and 12 denote the places of
P .
‘.;-’. tl and t:2 correspondingly in the fixed numeration of C*. Then
4
S 2 2 v 2
' (A.2) 0% (e ,t,) = E[X(t)) -X(¢,)]° = ) (a, 58y j) .
2 j=1 "1 2
.
Q‘
',‘: Note that the covariance function of the process, R(s,t), is continuous
g
N
Nt on CxC, since X(t) is a.s. continuous at each point of C. Then the function
2 oz(s,t) is also continuous on Cx C, and, because of compactness, it is
f,'
f': uniformly continuous. Consequently, for every 6 >0 there is a n=n(8) >0 such
~\
2 2
o that d(tl,tz) <n implies that o (tl,tz) <£6%. 1If also tioty€ C*, then (A.2)
» implies that [a ,-a lse for every j. Let us rewrite the event A (I) as
::., 113 12j €
L.
s
.l
‘
-
-.s
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l\'
I'; there is an r > 0 such that for every § >0 there
X are tleC*nI and tzeC* such that d(tl,t2)<6
AE(I) = oAy .
and | } Y (w(a, ,-a, )| ze+r.
i i

Y y=1 3 TIPS ,
‘
: We claim that AE(I) is a tail event for the sequence Yl,Yz,... . It is suf-
\x ficient to show that if wy and w, are such that for some finite m
P
§
\ = A .
f{ Yn(wl) Yn(wz) for all n>m, then w, € AE(I) implies w, € E:(I)
N Suppose the contrary, i.e. w eAe(I) and wzéAE(I). Then for some positive

r(wl), for all sufficiently small §>0 there are t) € C*n1I and tye€ C* such that

d(tl,tz) <§ while

Ijﬁle(wl)(ailj -a, j)| 2€+r(wl)

2
©
|j£le(w2)(ailj -aizj)| <e+2rw).
(Here, as before, il and 12 denote the places of tl and t2 respectively in -

the fixed numeration of C*). We conclude (recall that all sums have finite

numbers of terms) that

l o [ o]
5 Tlw)) < Ijzle(wl)(ailj—aizj)l - IjZIYj(wZ)(ailj-aizj)l
(A.3) s | Y Y, (w)(a, ,-a, )~ JY (w)(a, ,-a, ,)]
PRI Rt A T R 9% AP R M O R 9%

m
=1 T () =Y, (w,)) (a

j=1 317 3 -

., —-a
3 1,
The inequality (A.3), however, cannot hold for all positive 8, since its

left-hand side i1s positive, while the right-hand side goes to zero as 6~+0.

This contradiction shows that Ae(I) is a tail event. Consequently, Kolmogorov's

zero-one law implies that P(AE(I)) =0 or 1.
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We return now to the proof of Theorem l.l. For any I1c(, any € >0 define
* *
Be(I) - {w for any § >0 there are tls C*n1 and tze C* such that}
d(t;,t)) <8 and Ix(tl) —X(tz)l >g,
Then B€(I)CZA€/2(I). If X(t) is not sample continuous then P(BE(C)) >0 for
some € >0, Then P(Ae*(C))>>O for some €*> (0. This implies that P(Ae*(C))= 1.
Let d0 = suptl’

cover it by a finite number of compact sets

¢ ecd(tl,t2)<<’°. The compactness of C implies that we can
2
1) ~(1) (1)
Cl ,C2 yeoos Ckl

of diameter at

most d0/2 each. Since

k)

_ (1)
(A.4) Ae*(C) = 9 Ae*(ci )
1<1i <k, pA . (CP))>0. Thus
1’ 1 1’ S S § )
(1) (1) .
P(Ae*(ci ))=1. We divide now Ci into compact subsets of diameter at

1 1
most d0/4, and so on. We obtain a sequence of nested compact non-empty

we conclude, that for some i

sets

_eC0) | n(1) | ~(2)
C—Cl >Cil >C12 >..

with the following two properties: for each k=1,2,... P(Ae*(Cik)))=.l
k

and the diameter of Cik) is at most d0/2k. This sequence has to converge to
k
a point t_e C. Then, by the definition of Ae*(I)’

P(Iim X(t) - lim X(t) 2e*) 2 P( n Ae*(Cil())) = 1.
trteo t >t k=0 k
teC* teC*
This contradicts the assumption that X(t) 1s a.s. continuous at t,- This

tradiction shows that X(t) is sample continuous.
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